

The Law of Sines

Solve each of the following:

1.
$$\frac{x}{6} = \frac{3}{21}$$

$$2.\frac{51}{90} = \frac{30}{x}$$

solve each of the following.
1.
$$\frac{x}{6} = \frac{3}{21}$$
 2. $\frac{51}{90} = \frac{30}{x}$ 3. $\frac{0.7071}{45} = \frac{0.7660}{x}$

4.
$$\frac{0.5}{30} = \frac{x}{45}$$
 5. $\frac{300}{x} = 0.0152$

5.
$$\frac{300}{x} = 0.0152$$

Lesson Quiz

$4.1\,$ The Law of Sines

1. Find the area of the triangle shown at right to the nearest tenth of a square centimeter.

2. Find x and y in the triangle shown at right to the nearest tenth of a meter.

3. Find x in the triangle shown at right to the nearest tenth of a degree. 44.20

4. In a triangle, a = 86, b = 63, and $m \angle B = 47^{\circ}$.

b. If it does, find all possible values for $m \angle A$ to the nearest tenth of

a degree. _____ < A == \$% \$% \$% \$% \$\$

$14.2\,$ The Law of Cosines

In each exercise, find the unknown quantity. Round angles to the nearest degree and lengths to the nearest tenth.

- 1. $\theta = \sin^{-1} 0.39$ ______ 2. $\cos \theta = 0.96$ _____
- 3. $8^2 + 9^2 2(8)(9)\cos\theta = 3^2$
- 4. In $\triangle ABC$, a = 27, b = 18, and m $\angle C = 110^{\circ}$. Find the area of the triangle.
- 5. For ΔXYZ , x = 10, y = 12, and $X = 44^{\circ}$. Solve the triangle.

_esson Quiz

4.2 The Law of Cosines

1. Find x in the triangle shown at right to the nearest tenth of a centimeter.

2. Find x in the triangle shown at right to the nearest tenth of a degree. 115.4"

3. Solve $\triangle ABC$. Find b to the nearest tenth of a meter and $m \angle A$ and $m \angle C$ to the nearest tenth of a 6=24.1 meA=34.10 aC=105.9

4. A surveyor is measuring the distance across a pond, represented by YZ in the diagram at right. He finds that point X is 150 yards from point Y and 200 yards from point Z. If the measure of the angle formed at point X is 42° , what is the distance across the pond?

$14.3\,$ Fundamental Trigonometric Identities

Given the information below, solve for every possible ΔABC . Round angle measures to the nearest degree and lengths to the nearest tenth of a unit.

1.
$$a = 3, b = 4, c = 5$$

2.
$$A = 45^{\circ}$$
, $B = 30^{\circ}$, $c = 10$

3.
$$B = 120^{\circ}$$
, $a = 12$, $c = 10$

4.
$$A = 45^{\circ}$$
, $a = 10$, $b = 12$

5.
$$B = 30^{\circ}$$
, $a = 12$, $b = 4$

Lesson Quiz

14.3 Fundamental Trigonometric Identities

Write each expression in terms of a single trigonometric function.

1.
$$(\cot \theta)(\sec \theta)$$

(sec
$$\theta$$
)

2.
$$\frac{\sec \theta}{\csc \theta}$$

3.
$$(\csc \theta + 1)(\csc \theta - 1)$$

4.
$$(\tan^2\theta + 1)(\cos\theta)$$

$$5. \frac{\sin^2 \theta}{1 - \sin^2 \theta}$$

6.
$$\frac{\cos^2\theta + \sin^2\theta}{(\sec\theta)(\cot\theta)}$$

7.
$$\frac{\sec^2\theta - 1}{\tan\theta}$$

8.
$$\frac{\cos \theta}{(\sin \theta)(\cot \theta)}$$

Write each expression in terms of tan θ .

9.
$$\frac{(\sec \theta)(\sin \theta)}{\tan \theta + \cot \theta}$$

$$10. \frac{1 - \cos^2 \theta}{\cos^2 \theta}$$

11.
$$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$$

12.
$$\csc^2\theta - 1$$

$14.4\,$ Sum and Difference Identities

Find the distance between each pairs of points below. Give approximate values rounded to the nearest tenth.

- 1. (4, 1) and (4, 0) ______ 2. (3, 2) and (-2, -5) ____

- 5. (cos 30°, sin 30°) and (cos 45°, sin 45°)

Lesson Quiz

$4.4\,$ Sum and Difference Identities

Find the exact value of each expression.

1. $\sin\left(\frac{5\pi}{3} - \frac{\pi}{6}\right)$

 $2.\cos\left(\frac{3\pi}{2}+\frac{3\pi}{4}\right)$

 $3. \sin(-210^{\circ})$

4. cos 75°

Prove each identity.

 $5.\sin(\theta-270^{\circ})=\cos\theta$

 $6.\cos(\pi+x)=-\cos x$

7. Find the rotation matrix for a rotation of 120° about the origin. Then find the image of the point (3, 4) after this rotation. Give coordinates rounded to the nearest hundredth.

$14.5\,$ Double-Angle and Half-Angle Identities

Find the exact value of each expression:

- 1. sin 15° ______ 2. cos 15° _____
- 3. sin 255° ______ 4. cos 255° _____

5. tan (-255°)

Lesson Quiz

esson Quiz [4.5 Double-Angle and Half-Angle Identities

Use the information given to find the exact value of $\sin 2 heta$ and $\cos 2\theta$.

1.
$$0^{\circ} \le \theta \le 90^{\circ}$$
; $\sin \theta = \frac{4}{5}$

2.
$$0^{\circ} \le \theta \le 90^{\circ}$$
; $\sin \theta = \frac{2}{\sqrt{5}}$

$$=\frac{4}{5}$$
 $c_{\infty} 20 = \frac{-3}{5}$

3.
$$270^{\circ} \le \theta \le 360^{\circ}; \cos \theta = \frac{3}{5}$$

$$3.270 \le 0 \le 300, \cos 0 = 5$$

4.
$$180^{\circ} \le \theta \le 270^{\circ}$$
; $\cos \theta = -\frac{1}{2}$

sos 2θ.
1. 0° ≤ θ ≤ 90°; sin θ =
$$\frac{4}{5}$$

2. 0° ≤ θ ≤ 90°; sin θ = $\frac{2}{\sqrt{5}}$
2. 0° ≤ θ ≤ 90°; sin θ = $\frac{2}{\sqrt{5}}$
3. 270° ≤ θ ≤ 360°; cos θ = $\frac{3}{5}$
3. 270° ≤ θ ≤ 360°; cos θ = $\frac{3}{5}$
3. 270° ≤ θ ≤ 270°; cos θ = $-\frac{5}{13}$
3. 270° ≤ θ ≤ 270°; cos θ = $-\frac{5}{13}$
3. 270° ≤ θ ≤ 270°; cos θ = $-\frac{5}{13}$
3. 270° ≤ θ ≤ 270°; cos θ = $-\frac{5}{13}$

Use the information given to find the exact value of $\sin \frac{\theta}{2}$ and $\cos \frac{\theta}{2}$.

5.
$$270^{\circ} \le \theta \le 360^{\circ}; \sin \theta = -\frac{12}{13}$$

6.
$$270^{\circ} \le \theta \le 360^{\circ}; \sin \theta = -\frac{4}{5}$$

7.
$$180^{\circ} \le \theta \le 360^{\circ}; \cos \theta = \frac{7}{25}$$

8.
$$180^{\circ} \le \theta \le 360^{\circ}$$
; $\cos \theta = -\frac{7}{25}$

Write each expression in terms of a single trigonometric function of θ .

9.
$$\frac{2\sin\theta}{\sin(2\theta)}$$

10.
$$\cos(2\theta) + \sin^2\theta$$

$$\cos(2\theta) + \sin^2\theta$$

$14.6\,$ Solving Trigonometric Equations

Solve for x.

$$1 2x^2 + x - 1 = 0$$

1.
$$2x^2 + x - 1 = 0$$
 ______ 2. $x^2 - 2x - 3 = 0$ ______

Solve for $0^{\circ} \le \theta \le 360^{\circ}$.

$$a \sin \theta = -1$$

Solve for
$$0^{\circ} \le \theta \le 360^{\circ}$$
.

3. $\sin \theta = -1$ 4. $\cos \theta = -\frac{\sqrt{3}}{2}$

5.
$$\sin \theta = \frac{\sqrt{6} - \sqrt{2}}{4}$$

Lesson Quiz

$14.6\,$ Solving Trigonometric Equations

Find the exact solutions of each equation for $0^{\circ} \le \theta \le 360^{\circ}$.

1.
$$6\cos\theta + 4 = 1$$

2.
$$5 \sin \theta - \sqrt{2} = 3 \sin \theta$$

1.
$$6 \cos \theta + 4 = 1$$

 $1 + 20^{\circ} 4 + 240^{\circ}$
2. $5 \sin \theta - \sqrt{2} = 3 \sin \theta$
 $4 + 5 = -\cos^{2} \theta$
 $1 + 3 \cos \theta + 2 = -\cos^{2} \theta$

4.
$$3\cos\theta + 2 = -\cos^2\theta$$

Find the exact solutions of each equation for $0 \le x \le 2\pi$.

5.
$$\sin^2 x + 3 \sin x - 4 = 0$$

6.
$$3 - 3\cos x = 2\sin^2 x$$

0. 2π , 3

7.
$$2\sin x = \sqrt{1/3}$$
 $5\sqrt{3}$

$$8. \ 2 \sin x = 4 \sin x + 2 \ 37$$

Find all solutions of each equation.

9.
$$5 \cos \theta + 2 = 2 - 3 \cos \theta$$

 $9. 5 \cos \theta + 2 = 2 - 3 \cos \theta$
 $9. 5 \cos \theta + 3 60 \cos \theta$
 $9. 5 \cos \theta + 2 = 2 - 3 \cos \theta$
 $9. 5 \cos \theta + 2 = 2 - 3 \cos \theta$
 $9. 5 \cos \theta + 2 = 2 - 3 \cos \theta$
 $9. 5 \cos \theta + 3 \cos \theta$

$$10. \sin 2\theta = 4 \sin \theta$$

11.
$$3 \sin^2 \theta - \cos^2 \theta = 0$$

11.
$$3 \sin^2 \theta - \cos^2 \theta = 0$$

 $30^{\circ} + 360_{m}$ $150^{\circ} + 360_{m}$ $150^{\circ} + 360_{m}$ $150^{\circ} + 360_{m}$ $150^{\circ} + 360_{m}$

12.
$$\cos 2\theta + \sin \theta = 1$$

Chapter Assessment

Chapter 14, Form A, page 1

Write the letter that best answers the question or completes the statement.

<u>B</u>

- 1. Find the area of the triangle shown at right.
 - a. 44.95 square meters
 - b. 111.26 square meters
 - c. 120 square meters
 - d. 222.52 square meters

- 2. Find the value of x in the triangle shown at right.
 - a. 13.6 meters
- b. 24.8 meters
- c. 37.1 meters
- d. 45.8 meters

- 3. Find the value of x in the triangle shown at right.
 - a. 106.3 feet
- ь. 102.4 feet
- c. 83.5 feet
- d. 61.3 feet

12 m

- 4. Find the smallest angle in the triangle shown at right.
 - a. 24.6°
- b. 31.2°
- c. 40.3°
- d. 63.5°

115 ft

20 m

54°

25 m

- 5. Find the value of x in the triangle shown at right.
 - a. 50.1°
- b. 55.3°
- c. 59.7°
- d. 64.4°

- 6. In $\triangle ABC$, b = 42.9, c = 39.5, and $m \angle B = 80^{\circ}$. Find $m \angle C$.
 - a. 65.1°

b. 114.9°

c. 65.1° or 114.9°

d. none of these

- 7. Which of the following is a simpler form of $\frac{(\csc \theta)(\tan \theta)}{(\cot \theta)(\sec \theta)}$?
 - a. $\cos \theta$
- b. $\sin \theta$
- c. tan θ
- d. sec θ

Chapter Assessment

Chapter 14, Form A, page 2

- 8. Which of the following is a simpler form of $\frac{\sec^2 \theta}{(\sec \theta + 1)(\sec \theta 1)}$?
 - a. $\cot^2 \theta$
- b. $\csc^2 \theta$
- c. $\cos^2 \theta$
- d, $tan^2 \theta$

- 9. Which of the following is a simpler form of $\frac{\sin^2 \theta}{1 \cos \theta} 1$?
 - a. $\sec \theta$
- b. $\cos \theta$
- ϵ . csc θ
- d. $\sin \theta$

- 10. Which of the following is a simpler form of $\cos(\theta + 90^{\circ})$?
 - a. $\tan \theta$
- b. $-\tan\theta$
- c. $\sin \theta$
- d. $-\sin\theta$

- 11. Which of the following is a simpler form of $\sin(3\pi + x)$?
 - a. cos x
- b. $-\cos x$
- c. sin x
- $d \sin x$

- 12. Which of the following is a simpler form of $(\sec^2 \theta)(\sin 2\theta)$?
 - a. $2 \sin \theta$
- b. $2 \csc \theta$
- c. 2 tan θ
- d. 2 cot θ

- 13. Which of the following is a simpler form of $\sin^2 \theta + \cos^2 \theta + \cos 2\theta$?
 - a. $2 \tan^2 \theta$
- b. $2 \sin^2 \theta$
- c. $2 \csc^2 \theta$
- d. $2\cos^2\theta$

- 14. Find the exact value of $\sin\left(\frac{\pi}{6} \frac{2\pi}{3}\right)$.
- **b.** $-\frac{\sqrt{3}}{3}$

- 15. If $\cos \theta = \frac{1}{8}$ and $270^{\circ} \le \theta \le 360^{\circ}$, find $\cos \left(\frac{\theta}{2} \right)$.

- 16. Solve $7 \sin \theta = 4.7 + 2 \sin \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$.
- ь. 70° and 290° a. 70° and 110°
- c. 31.5° and 148.5° d. 31.5° and 328.5°

17. Solve $8 \cos x + 2\sqrt{3} = 4 \cos x$ for $0 \le x \le 2\pi$.

- a. $\frac{\pi}{2}$ and $\frac{3\pi}{2}$ b. $\frac{5\pi}{6}$ and $\frac{7\pi}{6}$
- c. $\frac{\pi}{2}$ and $\frac{3\pi}{2}$
- d. $\frac{3\pi}{4}$ and $\frac{5\pi}{4}$
- 18. Which equation would have to be solved in order to solve $3 \sin^2 x + 5 \sin x = 2$?
 - a. $\sin x = 3$ and $\sin x = -2$
- b. $\sin x = 3 \text{ and } \sin x = -\frac{1}{2}$

- c. $\sin x = -3$ and $\sin x = 2$
- d. $\sin x = \frac{1}{3}$ and $\sin x = -2$

- 19. If an isosceles triangle has a base of length 36 and its vertex angle measures 48°, find the perimeter of the triangle.
 - a. 75.4
- b. 116.9
- c. 124.5
- d. 192

12 m

Chapter Assessment

Chapter 14, Form A, page 1

Write the letter that best answers the question or completes the statement.

- 1. Find the area of the triangle shown at right.
 - a. 44.95 square meters
 - ь. 111.26 square meters
 - c. 120 square meters
 - d. 222.52 square meters

- 2. Find the value of x in the triangle shown at right.
 - a. 13.6 meters
- b. 24.8 meters
- c. 37.1 meters
- d. 45.8 meters

- 3. Find the value of x in the triangle shown at right.
 - a. 106.3 feet
- ь. 102.4 feet
- c. 83.5 feet
- d. 61.3 feet

20 m

54°

- 4. Find the smallest angle in the triangle shown at right.
 - a. 24.6°
- b. 31.2°
- c. 40.3°
- d. 63.5°

- 5. Find the value of x in the triangle shown at right.
 - a. 50.1°
- b. 55.3°
- c. 59.7°
- $d.64.4^{\circ}$

- 6. In $\triangle ABC$, b = 42.9, c = 39.5, and $m \angle B = 80^{\circ}$. Find $m \angle C$.
 - a. 65.1°

b. 114.9°

c. 65.1° or 114.9°

d. none of these

- 7. Which of the following is a simpler form of $\frac{(\cos \theta)(\tan \theta)}{(\cot \theta)(\sec \theta)}$?
 - a. $\cos \theta$
- b. $\sin \theta$
- c. tan θ
- **d**. sec θ

Chapter Assessment

Chapter 14, Form A, page 2

- 8. Which of the following is a simpler form of $\frac{\sec^2 \theta}{(\sec \theta + 1)(\sec \theta 1)}$?
 - a. $\cot^2 \theta$
- b. $\csc^2 \theta$
- c. $\cos^2 \theta$

- 9. Which of the following is a simpler form of $\frac{\sin^2 \theta}{1 \cos \theta} 1$?
 - a. sec θ
- b. $\cos \theta$
- c. $\csc \theta$
- d. $\sin \theta$

- 10. Which of the following is a simpler form of $\cos(\theta + 90^{\circ})$?
 - a. $\tan \theta$
- b. $-\tan \theta$
- c. $\sin \theta$
- d. $-\sin\theta$

- 11. Which of the following is a simpler form of $\sin(3\pi + x)$?
 - a. COS X
- b. $-\cos x$
- c sin x
- $d. \sin x$

- 12. Which of the following is a simpler form of $(\sec^2 \theta)(\sin 2\theta)$?
- a. $2 \sin \theta$
- b. $2 \csc \theta$
- c. 2 tan θ
- d. 2 cot θ

- 13. Which of the following is a simpler form of $\sin^2 \theta + \cos^2 \theta + \cos 2\theta$? a. $2 \tan^2 \theta$ b. $2 \sin^2 \theta$
- c. $2 \csc^2 \theta$
- d. $2\cos^2\theta$

- 14. Find the exact value of $\sin\left(\frac{\pi}{6} \frac{2\pi}{3}\right)$.
- b. $-\frac{\sqrt{3}}{3}$

- 15. If $\cos \theta = \frac{1}{8}$ and $270^{\circ} \le \theta \le 360^{\circ}$, find $\cos \left(\frac{\theta}{2} \right)$.

- 16. Solve $7 \sin \theta = 4.7 + 2 \sin \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$.
- a. 70° and 110°
- b. 70° and 290°
- c. 31.5° and 148.5° d. 31.5° and 328.5°

- 17. Solve $8 \cos x + 2\sqrt{3} = 4 \cos x$ for $0 \le x \le 2\pi$.
 - a. $\frac{\pi}{2}$ and $\frac{3\pi}{2}$ b. $\frac{5\pi}{6}$ and $\frac{7\pi}{6}$ c. $\frac{\pi}{2}$ and $\frac{3\pi}{2}$ d. $\frac{3\pi}{4}$ and $\frac{5\pi}{4}$

- 18. Which equation would have to be solved in order to solve $3 \sin^2 x + 5 \sin x = 2$?
 - a. $\sin x = 3$ and $\sin x = -2$
- b. $\sin x = 3 \text{ and } \sin x = -\frac{1}{2}$

- d. $\sin x = \frac{1}{3}$ and $\sin x = -2$ c. $\sin x = -3$ and $\sin x = 2$
- 19. If an isosceles triangle has a base of length 36 and its vertex angle measures 48°, find the perimeter of the triangle.
 - a. 75.4
- b. 116.9
- c. 124.5
- d. 192